论文部分内容阅读
4.1 信号动态范围哥达德系统被用来跟踪各种轨道的空间飞行噐。为了确定系统的最大可能动态范围,参考文献(1)分析了图4—1所示的情况。它假设跟踪站位于赤道上而卫星在远地点为60000浬,近地点为150浬的椭园轨道中旋转。并且,假定卫星在轨道上的转动方向与地球转动方向相反。为了便于分析起见,同步轨道系统是这样变化的:在近地点、(情况Ⅰ)、在距近地点或0地心角方向为π/2弧度(情况Ⅱ)、3/4π弧度(情况Ⅳ)、以及π弧度时(情况Ⅲ)跟踪站直接位于卫星之下。表4-1列出 R、(?),(?),(?)和(?)最大近似值。应当注意,除
4.1 Signal Dynamic Range The Goddard system is used to track the spatial flight of various orbits. To determine the maximum possible dynamic range of the system, reference (1) analyzes the situation shown in Figure 4-1. It assumes that the tracking station is located on the equator and that the satellite rotates in an orbital orbit with a distance of 60 000 远 at apogee and 150 近 perigee. Also, assume that the orbiting direction of the satellites is opposite to the Earth’s rotation direction. In order to facilitate the analysis, the orbital system changes in such a way that in the perigee (case I), π / 2 radians (case II), 3 / 4π radians (case IV) in the direction of the perigee or 0, π radians (Case III) The tracking station is located directly below the satellite. Table 4-1 lists the R, (?), (?), (?) And (?) Maximum approximation. It should be noted that except