论文部分内容阅读
提出了一种基于免疫和混沌的改进PSO算法(ICPSO),该算法利用了混沌优化的多样性,结合免疫的克隆和交叉变异的原理来初始化和更新粒子群。仿真实验表明。相较于传统的PSO有收敛速度更快、精度更高、不易陷入局部最优的优点。最后采用ICPSO算法对两个典型函数的无约束极值问题和典型二阶传递函数模型辨识问题进行求解,验证了其收敛性和摆脱局部极值点的能力明显优于基本PSO算法。