论文部分内容阅读
The fluidization behavior of nano and sub-micron powders belonging to group C of Geldart’s classification was studied in a mechanically vibrated fiuidized bed(vibro-fiuidized bed) at room temperature. Pretreated air was used as the fiuidizing gas whereas SiO2,Al2O3,TiO2,ZrSi,BaSO4 were solid particles. Mechanical vibration amplitudes were 0.1,0.25,0.35,0.45 mm,while the frequencies were 5,20,30,40 Hz to investigate the effects of frequency and amplitude of mechanical vibration on minimum fiuidization velocity,bed pressure drop,bed expansion,and the agglomerate size and size distribution. A novel technique was employed to determine the apparent minimum fluidization velocity from pressure drop signals. Richardson-Zaki equation was employed as nano-particles showed fiuid like behavior when fiuidized. The average size of agglomerates formed on top of the bed was smaller than those at the bottom. Size distribution of agglomerates on top was also more uniform compared to those near the distributor. Larger agglomerates at the bottom of the bed formed a small fraction of the bed particles. Average size of submicron agglomerates decreased with increasing the frequency of vibration,however nano particles were less sensitive to change in vibration frequency. Mechanical vibration enhanced the quality of fluidization by reducing channeling and rat-holing phenomena caused by interparticle cohesive forces.
The fluidization behavior of nano and sub-micron powders belonging to group C of Geldart’s classification was studied in a mechanically vibrated fiuidized bed (vibro-fiuidized bed) at room temperature. Pretreated air was used as the fiuidizing gas as SiO2, Al2O3, TiO2, ZrSi, BaSO4 were solid particles. Mechanical vibration amplitudes were 0.1,0.25,0.35,0.45 mm, while the frequencies were 5,20,30,40 Hz to investigate the effects of frequency and amplitude of mechanical vibration on minimum fiuidization velocity, bed pressure A novel technique was employed to determine the apparent minimum fluidization velocity from pressure drop signals. Richardson-Zaki equation was employed as nano-particles showed fiuid like behavior when fiuidized. The average size of agglomerates formed on top of the bed was smaller than those at the bottom. Size distribution of agglomerates on top was also more uniform compared to those near the distr ibutor. Larger agglomerates at the bottom of the bed formed a small fraction of the bed particles. Average size of submicron agglomerates decreased with increasing the frequency of vibration, however nano particles were less sensitive to change in vibration frequency. Mechanical vibration enhanced the quality of fluidization by reducing channeling and rat-holing phenomena caused by interparticle cohesive forces.