可生物降解聚酯的制备及性能研究进展

来源 :化工学报 | 被引量 : 0次 | 上传用户:ssbbe1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
相对于传统高分子材料,生物降解高分子材料由于其能够在自然环境下降解为环境无害的物质,作为解决塑料白色污染的重要手段之一,近年来获得快速发展.对本课题组生物降解聚酯结构设计、改性及产业化等方面的研究进展进行了总结.通过无规/嵌段共聚的方式在聚二元酸二元醇酯中引入共聚单体单元、长/短支化结构可有效对材料的结晶性能、熔体强度等性能进行调控,进而实现对材料加工性能、力学性能以及生物降解速率的调控.通过对聚合工艺的创新优化,实现高分子量不饱和聚酯的合成,并阐明了其聚合机理;进一步,通过在不饱和聚酯中引入Diels-Alder反应/金属配位活性位点实现可逆交联弹性体的制备.对聚二元酸二元醇酯的结晶结构调控与结晶机理进行了深入的研究,提出了一种基于结晶成核动力学测定高分子结晶次级临界核尺寸的方法;基于类质同晶构型构象匹配设计了新型高效大分子型成核剂.在实验室研究的基础上,与企业合作建成了年产万吨生物降解聚酯及其共聚酯的生产线,生产的产品已应用于一次性餐具、超市购物袋和地膜的制备,并在新疆进行了农田可降解地膜的应用示范.
其他文献
化工燃料在提供能源过程中产生的低浓度CO2废气可以被工业废液吸收.结合当前研究现状,介绍了用工业废液吸收低浓度CO2废气的研究进展,并开展了可行性分析;归纳了CO2废气与工业废液的反应原理,将其大致分为中和反应、复分解反应、微生物转化等反应类型,并讨论了其吸收动力学;总结了工业废液吸收低浓度CO2废气的工艺装置与流程.在废液吸收废气的处理模式中,CO2的吸收对降低碱液的pH、脱除废液中有害物质效果良好,同时还可以副产微纳米碳酸钙、生物柴油等高附加值产品,实现废弃资源的深度循环利用.此外,分析了工业废液吸收
在细胞工厂构建中设计-构建-测试-学习(design-build-test-learn,DBTL)循环是开发微生物细胞工厂的基本研究思路,其中设计环节尤为重要,然而传统的微生物细胞工厂设计方法主要依靠经验、费时费力、准确率低,影响了微生物细胞工厂的开发效率.当前,规模越发庞大的生物数据库和人工智能技术推动了微生物细胞工厂智能设计的快速发展,提升了在生物合成途径设计、调控元件设计和全局优化设计等方面的设计效率与应用.本文综述了微生物细胞工厂中途径预测、元件设计和途径与元件的组合三个环节中的智能设计工具,微生
对比了现有煤热解制油气技术的特点,从反应工程“三传一反”的角度系统分析和概括了煤热解过程中挥发分在颗粒内生成和释放、颗粒间扩散和反应器中停留等关键步骤中的热量、质量传递和挥发分二次反应对油气品质的影响,揭示了目前碎煤热解制油气技术普遍存在的目标产品产率低、品质差、含尘量高等技术难题的根源,并总结出煤定向热解调控的有效措施,即在挥发分生成和半焦缩聚段采用高温加热和快速传递的传热方式,在挥发分扩散过程中利用半焦床层重整焦油和过滤灰尘,在反应器中设置气体通道导流挥发分的定向溢出.针对研究团队前期开发的内构件移动
开发清洁高效的可再生能源是未来能源转型的必然趋势.氢能作为一种绿色无污染的能源载体,可通过电解水技术实现氢能与电能的高效转化,有望作为风力、光伏发电的重要调节手段.碱性膜电解水制氢能够提高电流密度,增加能量转化效率,优于碱性水溶液电解水制氢;与此同时,可采用铁、镍等非贵金属制备催化剂,克服质子交换膜电解水制氢使用贵金属催化剂带来的设备昂贵、资源受限问题.本文综述了碱性膜电解制氢技术发展现状,重点围绕自支撑催化电极、耐碱腐蚀离子膜、有序结构膜电极开展讨论,包括催化剂制备策略,耐碱离子膜发展现状,以及有序化膜
微球制剂是新型的给药系统,其粒径均一性非常重要,不仅影响产品批次间制备重复性,还会影响应用效果.因此,尺寸均一、可控的微球产品是医药制剂的关键核心.本团队成功发展了微孔膜乳化技术,20年来在粒径均一、尺寸可控微球的制备和应用方面进行了系统性研究.均一的微球制剂的优势有:绿色环保、降低成本,利于规模放大,批次间重复性好,利于研究构效关系.本团队制备的均一载药微球已成功应用于缓释制剂、疫苗递送及恶性肿瘤治疗中.