论文部分内容阅读
随着计算能力的飞速增长、训练数据的不断积累以及非线性激活函数的不断完善,卷积神经网络(CNN)在手写体汉字识别中表现出较好的识别性能。针对CNN识别手写体汉字识别速度慢的问题,将二维主成分分析(2DPCA)与CNN相结合识别手写体汉字。首先,利用2DPCA提取手写体汉字的投影特征向量;然后,将得到的投影特征向量组成特征矩阵;其次,用组成的特征矩阵作为CNN的输入;最后,用Softmax函数进行分类。与基于AlexNet的CNN模型相比,所提方法的运行时间降低了78%,与基于ACNN与DCNN的模型相