论文部分内容阅读
为解决在设备状态监测应用中建立智能诊断模型经常面临历史样本数据空间有限的问题,研究了智能诊断模型的自更新机制,并采用统一建模语言对其进行了分析建模。在此基础上,给出了该机制的实施架构。该机制的基本思想是用实际设备状态监测过程中的监测数据来更新智能诊断模型。在此机制作用下,通过在设备状态监测过程中跟踪设备状态的变化,一个基于有限的设备状态样本空间训练的智能诊断模型能够在模型失效的情况下,通过学习新设备状态下的监测数据不断提升其诊断能力。该机制的可行性和有效性通过实例应用得到了验证。