论文部分内容阅读
为了进一步改善非线性功率放大器系统的线性度,提出了一种基于BP神经网络逆向建模的离线训练自适应预失真方法。利用BP神经网络对功放逆向建模,并将建立好的逆模型参数作为预失真器模型初值。为了提高在初始预失真系统中预失真器的线性化效果及系统自适应进程的速度,在建立自适应预失真系统之前,利用BP逆向模型对预失真器进行离线训练。最后采用直接结构和最小均方(LMS)算法调节神经网络预失真器的权值,以消除放大器非线性的扰动。仿真结果显示,此方案可使邻道互调功率降低约18 dB,而经典的直接—非直接结构只降低了8