论文部分内容阅读
作为近年来爆炸式发展的方法模型,机器学习为地质找矿提供了新的思维和研究方法。本文探讨矿产预测研究的理论方法体系,总结机器学习在矿产预测领域的特征信息提取和信息综合集成两个方面的应用现状,并讨论机器学习在矿产资源定量预测领域面临的训练样本稀少且不均衡、模型训练中缺乏不确定性评估、缺少反哺研究、方法选择等困难和挑战。进一步以闽西南马坑式铁矿为实例论述基于机器学习方法的矿产预测基本流程:(1)通过成矿系统研究建立成矿模型,确定矿床控矿要素;(2)通过勘查系统研究建立找矿模型,并为评价预测提供相关的勘查数据