论文部分内容阅读
为了研究超高压锥形喷嘴结构参数对流体微射流的影响,本文建立了流体微射流区域的物理模型,采用有限元四边形网格并采取局部加密的方式对整个微射流区域进行网格化分。选用标准k-ε双方程湍流模型,利用大型的CFD软件Fluent对不同结构参数的超高压锥形喷嘴进行了数值模拟。模拟结果表明,喷嘴的结构参数对流体射流具有较大的影响,对于喉部直径一定的超高压锥形啧嘴,最佳的喷嘴结构设计原则为:在一定范围内,随着喷嘴入口直径的增加,流体在整个射流区域内的射流速度增大且射流稳定性增强;喷嘴的入口直径一定时,最佳的啧嘴收缩角为13°;最佳的喷嘴喉部圆柱段长度为喉部直径的3倍左右。
In order to study the influence of structural parameters of ultrahigh-pressure conical nozzles on the micro-jet flow, a physical model of the micro-jet flow region was established in this paper. The entire micro-jet flow region was meshed with the finite element quadrilateral grid and partial encryption. Standard k-ε two-equation turbulence model is selected, and large-scale CFD software Fluent is used to simulate the ultra-high pressure cone nozzle with different structural parameters. The simulation results show that the structural parameters of the nozzle have a great influence on the fluid jet. The design principle of the optimal nozzle structure for the ultra-high pressure cone nozzle with a certain throat diameter is as follows: Within a certain range, with the nozzle inlet diameter Increase the jet velocity of the fluid in the whole jet region and enhance the jet stability; when the inlet diameter of the jet nozzle is constant, the optimal jet nozzle retraction angle is 13 °; and the optimal nozzle laryngeal cylinder length is the laryngeal diameter About 3 times.