论文部分内容阅读
针对脑-机接口系统在训练样本较少的情况下,存在脑电(EEG)信号特征值稳定性低、特征向量区分度差等不足,提出一种脑电特征提取方法,即正则化共空域子空间分解法(R-CSSD).该方法在传统共空域子空间分解(CSSD)算法的基础上引入正则化思想,通过正则化参数将目标实验者的训练数据与其他实验者(称为辅助实验者)的同类型训练数据进行有效结合,以构造正则化空间滤波器,完成对目标实验者运动想象EEG信号的特征提取,并进一步选用K近邻(KNN)算法实现脑电数据的分类.实验结果表明:在小训练样本情况下,R-CSSD方法