论文部分内容阅读
目前对城市科技竞争力的研究还大多采用加权综合、因子分析、主成份分析、线性回归等方法,上述研究模型缺乏客观性且在处理海量数据时。表现出极大的局限性。本文以2009年、2010年浙江省11个地级市为研究对象,运用BP神经网络模型和CHAID决策树模型分别构建城市科技竞争力预测模型进行研究探索。研究结果表明,两模型对城市科技竞争力的预测评价研究非常有效,但在预测精度上,BP神经网络模型要优于CHAID决策树模型,在此基础上给出了指标变量对城市科技竞争力的重要性程度。