论文部分内容阅读
针对高维时序数据中局部相关模式的聚类问题,建立了一种基于相关子模式的spCluster模型,讨论了该模型与平均平方残值的关系.并以此模型为基础,提出了适用于时序数据的确定性双聚类算法sp—TSC,该算法首先利用spCluster模型将局部相关的数据对象符号化,然后将字符序列插入到泛化后缀树中,利用后缀树的性质避免了穷举局部相关子模式的各种组合,有效减小了搜索空间,从而可以在数据矩阵尺寸的线性时间内发现全部最大δ-spCluster.理论分析和实验表明,该算法是高效可行的.