论文部分内容阅读
图像风格迁移是用风格图像对指定图像的内容进行重映射,利用GAN自动进行图像风格迁移,可减少工作量,且结果丰富。特定情况下GAN方法所用的配对数据集很难获得。为了避免利用传统GAN进行图像风格迁移受到成对数据集的限制,提高风格迁移效率,本文利用改进的循环一致性对抗网络CycleGAN实现图像风格迁移,用密集连接卷积网络DenseNet代替原来网络生成器的深度残差网络ResNet,用同一映射损失和感知损失组成的损失函数度量风格迁移损失。所做改进使网络性能得到了提升,取消了网络对成对样本的限制,提高了风格