Profile of the RNA in exosomes from astrocytes and microglia using deep sequencing: implications for

来源 :中国神经再生研究(英文版) | 被引量 : 0次 | 上传用户:guojunaaaa
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Glial cells play an important role in signal transduction, energy metabolism, extracellular ion homeostasis and neuroprotection of the central nervous system. However, few studies have explained the potential effects of exosomes from glial cells on central nervous system health and disease. In this study, the genes expressed in exosomes from astrocytes and microglia were identified by deep RNA sequencing. Kyoto Encyclopedia of Genes and Genomes analysis indicated that several pathways in these exosomes are responsible for promoting neurodegenerative diseases, including Alzheimer\'s disease, Parkinson\'s disease and Huntington\'s disease. Gene ontology analysis showed that extracellular exosome, mitochondrion and growth factor activity were enriched in exosomes from the unique astrocyte group, while extracellular exosome and mitochondrion were enriched in exosomes from the unique microglia group. Next, combined with the screening of hub genes, the protein-protein interaction network analysis showed that exosomes from astrocytes influence neurodegenerative diseases through metabolic balance and ubiquitin-dependent protein balance, whereas exosomes from microglia influence neurodegenerative diseases through immune inflammation and oxidative stress. Although there were differences in RNA expression between exosomes from astrocytes and microglia, the groups were related by the hub genes, ubiquitin B and heat shock protein family A (Hsp70) member 8. Ubiquitin B appeared to be involved in pleiotropic regulatory functions, including immune regulation, inflammation inhibition, protein catabolism, intracellular protein transport, exosomes and oxidative stress. The results revealed the clinical significance of exosomes from glia in neurodegenerative diseases. This study was approved by the Animal Ethics Committee of Nantong University, China (approval No. S20180102-152) on January 2, 2018.
其他文献
Introduction:The rapidly growing field of regenerative medicine incorporates fundamental principles of stem cell biology and biomedical engineering to repair tissues damaged by genetic disorder,degeneration,or traumatic injury.The global market for stem c
期刊
Lipid peroxidation-derived aldehydes, such as acrolein, the most reactive aldehyde, have emerged as key culprits in sustaining post-spinal cord injury (SCI) secondary pathologies leading to functional loss. Strong evidence suggests that mitochondrial alde
Macrophages are highly versatile and plastic immune cells that are localized in nearly all organs of the body and contribute to a plethora of physiological and pathological processes in situ.Beside their roles as major players in the“first line of defense
期刊
Previous studies have shown that vagus nerve stimulation can improve patients\' locomotor function. The stimulation of the auricular vagus nerve, which is the only superficial branch of the vagus nerve, may have similar effects to vagus nerve stimulatio
The concept of neural plasticity accounts for the now well clarified brain ability to react to internal and external stimuli by transforming its structure and function. The translation of whatever experience in specific electrical signals that run through
期刊
Morphometric changes in cortical thickness (CT), cortical surface area (CSA), and cortical volume (CV) can reflect pathological changes after acute mild traumatic brain injury (mTBI). Most previous studies focused on changes in CT, CSA, and CV in subacute
Hypothermia is an important protective strategy against global cerebral ischemia following cardiac arrest. However, the mechanisms of hypothermia underlying the changes in different regions and connections of the brain have not been fully elucidated. This
After central nervous system (CNS) injury, severed axons fail to regenerate and their disconnections to the original targets result in permanent functional deficits in patients (Mahar and Cavalli, 2018). Both the diminished intrinsic regenerative capacity
期刊
Retinal ganglion cells (RGCs) are the sole output neurons of the retina that project long axons and transmit visual information to the brain. The degeneration of RGCs leads to irreversible vision loss in a variety of pathological states, including excitot
期刊
Macrophages are immune cells of myeloid origin and are present in almost all tissues. They perform a wide variety of functions contributing to tissue development, homeostasis, pathogenesis, and repair (Wynn et al., 2013). Strikingly, macrophages residing
期刊