论文部分内容阅读
分布性保持是多目标进化算法研究的一个重要方面,一个好的分布性能给决策者提供更多合理有效的选择。Pareto最优解的分布性主要体现在分布广度与均匀性两个方面。提出一种基于相似个体的多目标进化算法(SMOEA)。在种群维护中删除相似程度最大的个体;在进化操作中,选取了相似程度最大的个体进行进化。与目前经典算法NSGA-Ⅱ和ε-MOEA进行比较,结果表明新算法拥有良好的分布性,同时也较好的改善了收敛性。