论文部分内容阅读
为提高水文模型参数识别的可靠性,融合自回归模型与马尔可夫链-蒙特卡洛方法(auto regressive model based modified Markov Chain-Monte Carlo,AR-MCMC),利用自回归模型刻画残差序列的自相关性,修正MCMC方法中的残差协方差矩阵。通过新疆提孜那甫河流域融雪径流模型(SRM)的案例分析发现:融雪径流模拟的残差序列具有显著的自相关性;修正残差协方差矩阵后,边缘似然值更大;综合考虑多项评价指标,AR-MCMC方法在识别期与验证期推求的预测区间均优于MC