论文部分内容阅读
现有X线气胸检测存在两个主要问题:一是由于气胸通常与肋骨、锁骨等组织重叠,在临床上存在较大的漏诊,而现有算法的检测性能仍有待提高;二是现有基于卷积神经网络的算法无法给出可疑的气胸区域,缺乏可解释性。针对上述问题,提出了一种结合密集卷积网络(DenseNet)与梯度加权类激活映射的方法用于X线气胸的检测与定位。首先,构建了一个较大规模的胸部X线数据集PX-ray用于模型的训练和测试。其次,修改DenseNet的输出节点并在全连接层后添加一个sigmoid函数对胸片进行二分类(气胸/非气胸)。在训练过程