论文部分内容阅读
根据隐马尔可夫模型(HMM)适用于处理连续动态序列信号、支持向量机(SVM)与K近邻分类器(KNN)擅长模式分类的特点,设计一种(HMM+KNN)+SVM的混合分类器。利用HMM与KNN对测试样本进行判决。当判决结果相同时,直接输出判决结果,否则引入SVM对测试样本进行再判决。实验结果表明,该方法所确定的分类器优于单一的分类器判决,能有效实现表情识别。