论文部分内容阅读
Pareto多目标遗传算法是利用Pareto最优的概念发展出的一种求解多目标优化问题的向量优化方法,能够得到Pareto最优解集。由于采用常规的两个体参与交叉的遗传算法,使整个算法耗费在小生境(Niche)算子上的时间太多,导致算法的效率较低。本文发展出多个体参与交叉的Pareto多目标遗传算法,群体中的个体采用真实值表示,使该算法的速度大大提高,同时证明了相应的模式定理,并提出用方差和熵来分析该算法对解群多样性的影响。最后用算例说明了采用多个体参与交叉的Pareto多目标遗传算法与常规算法比较的结果,证