论文部分内容阅读
基于U-Net模型,提出了一个全卷积网络(FCN)模型,用于高分辨率遥感图像语义分割,其中数据预处理采用了数据标准化和数据增强,模型训练过程采用Adam优化器,模型性能评估采用平均Jaccard指数。为提高小类预测的准确率,模型中采用了加权交叉熵损失函数和自适应阈值方法。在DSTL数据集上进行了实验,结果表明所提方法将预测结果的平均Jaccard指数从0.611提升到0.636,可实现对高分辨率遥感图像端到端的精确分类。