论文部分内容阅读
It was observed that rare earth ions (Nd 3+, Sm 3+, Eu 3+, Gd 3+, Tb 3+) have significant quenching effects on the fluorescence of anticoagulation factor I (ACF I). The results of the fluorescence titration of ACF I with rare earth ions demonstrate that ACF I has two RE 3+-binding sites, and the rare earth ions and Ca 2+ bind to ACF I competitively in the two similar sites. The association constants K 1 and K 2 of ACF I with each rare earth ions (Nd 3+, Sm 3+, Eu 3+, Gd 3+, Tb 3+) are close to each other, which indicates the structural similarity of the two binding sites in ACF I. Although the ionic radii of Nd 3+, Sm 3+, Eu 3+, Gd 3+ and Tb 3+ are different, both their K 1 and K 2 are similar, respectively. This reveals the conformational flexibility of the two binding sites in ACF I, which offers a possibility for Ca 2+ to take play in the inducing conformational changes of ACF I and the promoting the binding of ACF I with activated coagulation factor X.
It was observed that rare earth ions (Nd 3+, Sm 3+, Eu 3+, Gd 3+, Tb 3+) have significant quenching effects on the fluorescence of anticoagulation factor I (ACF I). The results of the fluorescence titration of ACF I with rare earth ions demonstrate that ACF I has two RE 3 + -binding sites, and the rare earth ions and Ca 2+ bind to ACF I competitively in the two similar sites. The association constants K 1 and K 2 of ACF I with each rare earth ions (Nd 3+, Sm 3+, Eu 3+, Gd 3+, Tb 3+) are close to each other, which indicates the structural similarity of the two binding sites in ACF I. Although the ionic The radii of Nd 3+, Sm 3+, Eu 3+, Gd 3+ and Tb 3+ are different, both of which K 1 and K 2 are similar, respectively. This reveals the conformational flexibility of the two binding sites in ACF I, which offers a possibility for Ca 2+ to take play in the inducing conformational changes of ACF I and the promoting the binding of ACF I with act ivated coagulation factor X.