论文部分内容阅读
遗传算法具有搜索全局最优解的能力,并且有很强的鲁棒性,而BP算法具有很好的泛化能力和非线性映射能力,基于两种算法的特点,设计了一种GA-BP算法,该算法将遗传算法应用到神经网络中权值和阈值的优化中,将最优解的分布范围缩小,然后通过BP算法进行再次优化和精确求解,以防止神经网络陷入局部极小点,从而达到加速收敛、减少训练次数的目的;并且通过对比实验给出该算法的可行性和有效性分析,进一步验证了该算法在收敛速度和误差精度上的优越性。