论文部分内容阅读
对基于神经网络的洪水序列预测方法进行了研究。将动态学习率、惯性冲量方法改进的神经网络模型用于水文时间序列洪水预报中,提出以确定性系数最大为评价标准的参数优选方法。经两个洪水序列的实例研究结果表明,神经网络对于变化平缓的洪水序列,预报效果很好,对于彼动剧烈的复杂水文序列,洪水预报效果不如前者。