论文部分内容阅读
航班需求预测是航空公司收益管理的关键技术。BP神经网络用大量的历史数据进行学习,能够记忆复杂的历史订座规律和销售趋势,提出了一种基于BP神经网络的航班需求预测模型。通过对历史数据进行主成分分析获得该模型,用一元回归法和相关系数法对训练质量进行评估,对模型作了置信区间分析。将该模型与增量法、回归法进行了对比,具有在线预测速度快、预测精度相对较高等优点。