【摘 要】
:
基于人工设计特征的检测算法检测速度普遍较慢,检测精度也有待提高,已无法满足现今工业生产中的需求。而基于深度学习的检测技术,因其需要大量的计算和存储空间无法在资源受限的设备上部署使用。针对这些问题,引用一种通道剪枝方法实现YOLOv3检测网络的轻量化,得到剪枝模型SlimYOLOv3,并进一步提出将SlimYOLOv3用于工业场景下的实时检测任务。方法通过对通道缩放因子施加L1正则化来增强卷积层的通
【基金项目】
:
中国吉林省科学技术计划发展项目(20180201042GX),吉林省预算内基本建设资金资助项目(创新能力建设—高技术产业部分)(2019C054-b),中国吉林省科学技术计划发展项目(20200401090GX)。
论文部分内容阅读
基于人工设计特征的检测算法检测速度普遍较慢,检测精度也有待提高,已无法满足现今工业生产中的需求。而基于深度学习的检测技术,因其需要大量的计算和存储空间无法在资源受限的设备上部署使用。针对这些问题,引用一种通道剪枝方法实现YOLOv3检测网络的轻量化,得到剪枝模型SlimYOLOv3,并进一步提出将SlimYOLOv3用于工业场景下的实时检测任务。方法通过对通道缩放因子施加L1正则化来增强卷积层的通道级稀疏性,并对信息量较小的特征通道进行剪枝,最终获得轻量级的网络模型。与原模型相比,SlimYOLOv
其他文献
针对目前云制造系统中存在的各参与主体间信任问题以及资源调度效率问题,研究了将区块链技术应用于云制造系统中。首先,阐述了区块链技术应用于云制造系统的意义,提出了一种基于区块链技术的云制造系统;其次,设计了基于智能合约的制造资源调度方式,构建制造成本最小、时间最短、合格率最高的资源调度模型并用差分进化算法进行求解;最后,进行实验仿真。结果表明,基于区块链技术的智能合约内进行资源调度方法在保证了系统内各
传统数据中心的负载均衡只追求资源利用的最大化,而忽略了不同类型任务对完成时间的需求是不同的,使得系统总体服务质量无法达到最佳。针对不同任务的需求差异,引入时间效用函数以表征不同类型任务的完成时间与服务质量的关系,并形式化定义了面向效用最大化的动态资源分配问题。由于该问题是NP难的,设计了一个利用任务优先关系的调度机制,其主要思想为将原问题分解为若干同构的小规模子问题,并利用任务间的优先关系,决策为
针对SMOTE(synthetic minority over-sampling technique)等基于近邻值的传统过采样算法在处理类不平衡数据时近邻参数不能根据少数类样本的分布及时调整的问题,提出邻域自适应SMOTE算法AdaN_SMOTE。为使合成数据保留少数类的原始分布,跟踪精度下降点确定每个少数类数据的近邻值,并根据噪声、小析取项或复杂的形状及时调整近邻值的大小;合成数据保留了少数类的
能效优化是5G通信领域的一个研究热点。首先针对单小区多用户上行大规模MIMO通信系统,在满足用户QoS需求和系统可容忍的信道有效噪声条件下,建立关于发射功率、导频序列长度、基站天线数的能效优化模型;其次,不同于传统利用迭代算法求解使系统能效最佳的基站天线数,提出了采用Lambert W函数分析得到最佳基站天线数的闭式表达式;最后根据分式规划理论,采用迭代优化算法联合优化系统导频序列长度、发射功率、
在室内同时定位与建图(SLAM)的实际应用中,对称单一结构环境易造成激光SLAM错误建图,低质量光照或低纹理环境易造成视觉SLAM失效。针对上述室内退化环境,提出一种将激光、视觉、惯性测量单元(IMU)进行紧耦合的LVI-SLAM方法。在该方法前端,设计视觉评价环节对视觉信息置信度进行自适应调整;在该方法后端,进行位姿图优化以及多传感器回环抑制累积误差。视觉评价实验、单走廊实验以及大场景建图实验的
可诊断度是评估多处理器系统可靠性的一个关键指标。t/k诊断策略通过允许至多k个无故障处理器被误诊为故障处理器,从而极大提高了系统的可诊断度。与t可诊断度和t_1/t_1可诊断度相比,t/k可诊断度可以更好地反映实际系统的故障模式。3元n立方是一种性质优良并且应用广泛的网络拓扑,在许多分布式多处理器的构建中被用做底层网络。根据一些引理以及确定系统为t/k可诊断的充分条件,研究得出当n≥3及0≤k≤n