论文部分内容阅读
【摘 要】数学学科内容具备抽象性、逻辑性的特征,学生只有具备数学思维才能学好数学知识,全面掌握数学知识的应用方法。学生在参与解题的过程中可以发现,部分题型中存在多个数学知识点,如不能发散思维,则很难保证解答的准确性。因此,在开展数学教学工作时,应注重对学生发散性思维能力的培养,尤其是在课堂教学中,老师需要加强引导,促使学生自主探究和发散思维,逐步养成良好的数学思维能力,能够独立完成习题解答。下文便围绕初中阶段的数学教学工作展开研究,探究培养学生发散性思维的策略。
【关键词】初中数学;发散性思维;课堂教学
根据以往的教学经验,学生的数学思维能力对于其解题能力起着决定性的作用。而数学学科教学的主要目的便是加强学生对数学知识的认知,并且具备利用数学知识解决实际问题的能力。因此,可以认为,培养学生的数学思维是数学学科的教学重点,在具体开展教学工作时,需围绕数学思维能力的培养设计教学方案,尽可能为学生提供数学实践的机会,使其在实践过程中不断发散思维,逐步养成良好的数学思维。
一、巧用问题引导,锻炼学生数学思维
初中阶段的数学课堂教学中,对于问题情境的设置可以有效引发学生的思考,让学生根据问题引导自主发散思维,这可在一定程度上锻炼学生的思维能力。当教师根据特定的教学内容提出相应的问题时,可引导学生根据已经掌握的知识点探究问题的答案。在此过程中,教师应适当做出指导,促使学生从不同的角度分析问题,主动发散思维解答问题。在大部分数学习题中,均涵盖了多个数学知识点,学生只有全面掌握数学公式和理论知识,并具备应用数学知识的能力才能独立解答问题。解答问题的过程便是学生主动发散思维主动思考的过程,经过长期的坚持训练,可有效强化学生的思维能力[1]。
例如,在学习“平行线及其判定”时,教师可以首先以提问的形式让学生对前期所学内容进行复习,引导学生说出平行公理的内容,之后在黑板上畫示意图(见图1),让学生根据平行公理判断其中的AB与CD两条线是否为平行线。通过教师的引导,学生可以利用三角板测量出图中各个角的关系,之后鼓励学生共同讨论,当其中的∠a与∠b相等时,能否认为其为平行线,进而得出一种判断平行线的方法,即当第三条直线穿过两条直线时,其中的同位角相等的情况下,这两条直线便为平行关系。在教师的问题引导下,学生可结合已经掌握的数学知识发散思维,共同探究新知识。在此过程中,便可有效锻炼学生的数学思维。
二、借助思维导图,帮助学生发散思维
思维导图属于一种体现思维过程的工具,通过思维导图的绘制可以使学生对自身的思路进行梳理,逐步形成良好的思维习惯,养成好的数学思维。初中数学课堂教学中所涉及的知识点众多,大部分知识点之间均存在内在的联系,在掌握数学知识点之间关系的基础上方能利用所学知识点解决实际问题,实现对数学知识的灵活运用。因此,教师在开展课堂教学活动时,应尽可能引导学生发散思维,并且鼓励学生找出各类知识点的内在联系[2]。尤其是在遇到具体的问题时,可以引导学生先对题目中所考察的知识点进行解析,并且梳理相应的解题思路。在此过程中,便可引导学生自行绘制思维导图,将具体的知识点作为中心点向外扩散知识,找出各类知识的联系,掌握知识点的应用方法,这可在一定程度上锻炼学生的发散性思维能力。
例如,对于“投影与视图”的学习主要是为了培养学生的空间思维能力,该章节的学习对于学生的空间想象力提出了较高的要求,如果单纯依靠理论知识讲解很难使学生正确认识立体图形三视图的判断方法,也不能了解投影与视图之间存在的内在联系。此时,教师便可以将“投影与视图”章节的内容和知识点进行重新整合,并且将其绘制成思维导图形式(见图2)。在课堂讲解中,根据思维导图的思路,依次讲解相关的知识,使学生逐渐形成空间想象力和空间思维能力。在完成对该章节的教学后,教师也可以课堂中常见的物体为例,鼓励学生发挥自身的想象,绘制出三视图,检验学生的空间思维能力。对于部分无法凭借想象绘制出三视图的同学可以引导其细致观察物体,经观察后画出三视图,并总结出三视图的特点,不断强化学生的空间想象力和思维能力。
三、加强一题多解练习,引导学生发散思维
在初中数学习题中,有很大一部分习题的解答方式不具备唯一性,即学生可根据自身的思路从多个角度解答问题,对于该类题型的解答可更好的强化学生的数学思维,引导学生发散思维,对于提升学生的思维能力具有积极作用[3]。例题:当两个连续奇数的乘积为255时,这两个奇数分别是多少?这是典型的一元一次方程题,教师可以首先列举一种解题方法,让学生跟着教师的思路来发散思维,找出其他解题方法。学生经过讨论后,可以列举出多个方程式,如(2χ-1)(2χ+1)=255,χ(χ+2)=255等。在教师的引导下学生可以发现单一的题型可以具备多种解题思路,虽然理解问题的角度不同,但得到的答案是一致的。为了实现对学生发散思维能力的培养,在课堂教学中可以多举例一题多解的题型,对学生的思维能力进行强化锻炼。
结束语:
对于学生发散性思维的培养可有效提升其解题能力和数学知识的应用能力,这与新课标的教学要求相符。因此,在今后的初中数学教学中也应关注思维能力培养的重要性,致力于通过培养学生的思维能力来强化学生的数学核心素养。
参考文献:
[1]陈志恩.初中数学发散性思维培养策略探究[J].数学学习与研究,2020(12):40-41.
[2]尉娥.谈初中数学教学如何培养学生发散思维[J].新课程(下),2019(09):198.
[3]毕建华.初中数学教学中学生发散性思维能力培养策略探究[J].新课程(中学),2018(04):180.
(作者单位:麻栗坡民族中学云南)
【关键词】初中数学;发散性思维;课堂教学
根据以往的教学经验,学生的数学思维能力对于其解题能力起着决定性的作用。而数学学科教学的主要目的便是加强学生对数学知识的认知,并且具备利用数学知识解决实际问题的能力。因此,可以认为,培养学生的数学思维是数学学科的教学重点,在具体开展教学工作时,需围绕数学思维能力的培养设计教学方案,尽可能为学生提供数学实践的机会,使其在实践过程中不断发散思维,逐步养成良好的数学思维。
一、巧用问题引导,锻炼学生数学思维
初中阶段的数学课堂教学中,对于问题情境的设置可以有效引发学生的思考,让学生根据问题引导自主发散思维,这可在一定程度上锻炼学生的思维能力。当教师根据特定的教学内容提出相应的问题时,可引导学生根据已经掌握的知识点探究问题的答案。在此过程中,教师应适当做出指导,促使学生从不同的角度分析问题,主动发散思维解答问题。在大部分数学习题中,均涵盖了多个数学知识点,学生只有全面掌握数学公式和理论知识,并具备应用数学知识的能力才能独立解答问题。解答问题的过程便是学生主动发散思维主动思考的过程,经过长期的坚持训练,可有效强化学生的思维能力[1]。
例如,在学习“平行线及其判定”时,教师可以首先以提问的形式让学生对前期所学内容进行复习,引导学生说出平行公理的内容,之后在黑板上畫示意图(见图1),让学生根据平行公理判断其中的AB与CD两条线是否为平行线。通过教师的引导,学生可以利用三角板测量出图中各个角的关系,之后鼓励学生共同讨论,当其中的∠a与∠b相等时,能否认为其为平行线,进而得出一种判断平行线的方法,即当第三条直线穿过两条直线时,其中的同位角相等的情况下,这两条直线便为平行关系。在教师的问题引导下,学生可结合已经掌握的数学知识发散思维,共同探究新知识。在此过程中,便可有效锻炼学生的数学思维。
二、借助思维导图,帮助学生发散思维
思维导图属于一种体现思维过程的工具,通过思维导图的绘制可以使学生对自身的思路进行梳理,逐步形成良好的思维习惯,养成好的数学思维。初中数学课堂教学中所涉及的知识点众多,大部分知识点之间均存在内在的联系,在掌握数学知识点之间关系的基础上方能利用所学知识点解决实际问题,实现对数学知识的灵活运用。因此,教师在开展课堂教学活动时,应尽可能引导学生发散思维,并且鼓励学生找出各类知识点的内在联系[2]。尤其是在遇到具体的问题时,可以引导学生先对题目中所考察的知识点进行解析,并且梳理相应的解题思路。在此过程中,便可引导学生自行绘制思维导图,将具体的知识点作为中心点向外扩散知识,找出各类知识的联系,掌握知识点的应用方法,这可在一定程度上锻炼学生的发散性思维能力。
例如,对于“投影与视图”的学习主要是为了培养学生的空间思维能力,该章节的学习对于学生的空间想象力提出了较高的要求,如果单纯依靠理论知识讲解很难使学生正确认识立体图形三视图的判断方法,也不能了解投影与视图之间存在的内在联系。此时,教师便可以将“投影与视图”章节的内容和知识点进行重新整合,并且将其绘制成思维导图形式(见图2)。在课堂讲解中,根据思维导图的思路,依次讲解相关的知识,使学生逐渐形成空间想象力和空间思维能力。在完成对该章节的教学后,教师也可以课堂中常见的物体为例,鼓励学生发挥自身的想象,绘制出三视图,检验学生的空间思维能力。对于部分无法凭借想象绘制出三视图的同学可以引导其细致观察物体,经观察后画出三视图,并总结出三视图的特点,不断强化学生的空间想象力和思维能力。
三、加强一题多解练习,引导学生发散思维
在初中数学习题中,有很大一部分习题的解答方式不具备唯一性,即学生可根据自身的思路从多个角度解答问题,对于该类题型的解答可更好的强化学生的数学思维,引导学生发散思维,对于提升学生的思维能力具有积极作用[3]。例题:当两个连续奇数的乘积为255时,这两个奇数分别是多少?这是典型的一元一次方程题,教师可以首先列举一种解题方法,让学生跟着教师的思路来发散思维,找出其他解题方法。学生经过讨论后,可以列举出多个方程式,如(2χ-1)(2χ+1)=255,χ(χ+2)=255等。在教师的引导下学生可以发现单一的题型可以具备多种解题思路,虽然理解问题的角度不同,但得到的答案是一致的。为了实现对学生发散思维能力的培养,在课堂教学中可以多举例一题多解的题型,对学生的思维能力进行强化锻炼。
结束语:
对于学生发散性思维的培养可有效提升其解题能力和数学知识的应用能力,这与新课标的教学要求相符。因此,在今后的初中数学教学中也应关注思维能力培养的重要性,致力于通过培养学生的思维能力来强化学生的数学核心素养。
参考文献:
[1]陈志恩.初中数学发散性思维培养策略探究[J].数学学习与研究,2020(12):40-41.
[2]尉娥.谈初中数学教学如何培养学生发散思维[J].新课程(下),2019(09):198.
[3]毕建华.初中数学教学中学生发散性思维能力培养策略探究[J].新课程(中学),2018(04):180.
(作者单位:麻栗坡民族中学云南)