论文部分内容阅读
We present an experiment on the measurement of the spatial distribution of cold atoms in a ceramic cell.The atoms are first cooled by diffusing light produced by multiple scattering of laser light at the inner surface of the cell.An inhomogeneous magnetic field is applied after the atoms are cooled by using a pair of anti-Helmholtz coils,and thus the shift of atomic magnetic sub-levels is position-dependent.We move the anti-Helmholtz coils point by point while keeping the probe laser beam resonant with the cold atoms at zero magnetic field.The number of cold atoms at different positions can be extracted by detecting the absorption to the probe beam.The density of the cold atoms in the cell is measured in two dimensions perpendicular and parallel to the tube connecting to the vacuum system,respectively.The results show that at the center of the cell,fewer atoms exist due to the leakage of diffuse light into the hole connecting to the vacuum pump.The method we developed is used to detect cold atoms in a region where imaging is impossible.