论文部分内容阅读
研究了输入是可穿戴传感器获得的多通道时间序列信号,输出是预定义的活动的活动识别模型,指出活动中的有效特征的提取目前多依赖于手工和浅层特征学习结构,不仅复杂而且会导致识别准确率下降;基于深度学习的卷积神经网络(CNN)不是对时间序列信号进行手工特征提取,而是自动学习最优特征;目前使用卷积神经网络处理有限标签数据仍存在过拟合问题。因此提出了一种基于融合特征的系统性的特征学习方法用于活动识别,用ImageNetl6对原始数据集进行预训练,将得到的数据与原始数据进行融合,并将融合数据和对应的标签送入有监督的深度卷