论文部分内容阅读
在经典的BP神经网络框架支撑下,利用加权变异粒子群算法使神经网络的训练更加科学,同时也更好地发挥了粒子群算法的优点,使其分类效果更加精准。实验后的分类结果表明,与改进之前的BP神经网络相比,总体精度和Kappa系数分别提高了0.1083和0.1383;与支持向量机、最大似然及最小距离等分类方法进行了对比,分类效果均优于以上方法。加权变异粒子群BP神经网络不仅可以实现遥感影像的高精度分类,对解决“同谱异物”和“异物同谱”现象也具有一定的作用。