论文部分内容阅读
设G是一个具有顶点集V(G)和边集E(G)的图。设g和f是定义在V(G)上的两个整数值函数,使得g(x)≤f(x)对所有的点x∈V(G)都成立。结果G是一个(mg+n,mf-n)-图,1≤n<m≤2k,且g(x)≥2k-1对所有的点x∈V(G)都成立,则对任意给定具有|E(H)|=nk边的G的子图H,存在G的一个子图G'使G'有一个(g,f)-因子分解(n,k)-正交H。