论文部分内容阅读
由于环境等因素影响摄像机拍摄过程中存在可变噪声,针对传统无迹卡尔曼滤波(unscented Kalman filter,UKF)算法无法处理未知噪声的问题,设计了一种基于附加噪声预测器UKF的摄像机标定算法。首先,对传统UKF算法进行改进,引入噪声估计器并用极大后验估计求取次优解,解决未知可变情况下的噪声问题。然后,利用该改进UKF算法对摄像机进行标定,实现了标定精度的有效提高。实验结果显示该算法在有效保证滤波收敛性的同时,显著提高了滤波和摄像机的标定精度,由此推断基于附加噪声预测器UKF的摄像机标