论文部分内容阅读
针对当前的病毒软件检测方法难以应对大数据时代下病毒软件快速分类问题,提出一种病毒可视化检测的分类方法。详细阐述了病毒软件可视化过程,并提出一种卷积神经网络结合注意力机制的模型(即CNN_CBAM模型)进行病毒软件家族分类的深度学习方法。病毒软件样本采用BIG2015和Malimg数据集,将其进行可视化,并将CNN_CBAM模型在可视化后的数据集上进行训练。实验结果显示,CNN_CBAM模型能够有效地对病毒软件家族进行分类,且效果优于其他深度学习模型,其准确率比CNN_SVM病毒分析的方法提升16.77%。