论文部分内容阅读
摘要:在全球矿产勘查难度日益加大的形势下,各国及其重视发展新一代金属矿产的勘查技术与方法。本文系统地分析了金属矿产勘查中的各种新技术和新方法,着重介绍了蚀变流体填图技术;地球化学勘查技术;地球物理勘查技术和高光谱遥感技术。为以后工作提供参考。
关键词:金属矿产;勘查;新技术
Abstract: in the global mineral exploration difficulty rising situation, countries and pay attention to the development of a new generation of metal mineral exploration technology and method. This paper analyzes the metal mineral exploration of various kinds of new technology and new methods are introduced, and altered fluid mapping technology; Geochemical exploration technology; Geophysical exploration technology and hyperspectral remote sensing technology. To provide reference for future work.
Keywords: metal mineral; Exploration; New technology
中图分类号:O741+.2文献标识码:A 文章编号:
0引言
经济社会发展对矿产资源的需求持续快速增长,矿产资源保障程度总体呈现不足趋势。因此,重视发展新一代金属矿产的勘查技术与方法,探索和发现新矿床的新技术、新方法,无疑成为勘查取得成功的重要条件。矿产勘查正进入以技术为先导的新时代,未来大型矿床的发现将在很大程度上依赖于高新技术的应用及多技术的综合。因此本文注重提出各种新技术与新方法的分析,以此提供交流学习的机会。
1蚀变流体填图技术
流体广泛分布于地壳、地幔及地表中,流体研究是当今固体地球科学发展的前沿,而地幔柱、地壳中流体的大规模迁移与岩浆热液是地球流体研究的3个热点问题。地球各层圈中流体地质的性状与作用的研究,已成为当前国际地球科学研究的重要前沿领域,大尺度区域性的流体地质调查与研究是这一领域的热点之一。由此可见,蚀变流体填图是区域性流体地质研究的基础,是一种具有探索性和创新性的新的地质调查方法。
图1所示是1∶50000铜陵地区蚀变流体填图项目,识别出区域上存在5种类型的热液流体,根据流体活动特征,将所发育的流体记录归并为4个流体系统、7个流体子系统和18个流体单元。这些流体系统基本代表了长江中下游铜陵地区流体活动的时间序列及与地层、构造、岩浆岩的关系,它们的空间展布特征反映了不同时期流体活动的规模、形式及中心区域。
2地球化学勘查技术
2.1理论基础
勘查地球化学的理论基础是成矿物质在成矿过程中,在围岩中留下元素运移轨迹或在成矿以后,通过分散在四周岩石、土壤、水系沉积物、水、植物及气体中形成各种类型的地球化学分散模式,根据这些元素变化轨迹或分散模式去追踪和发现新的矿床。
图1安徽铜陵新桥硫铁矿蚀变流体地质简图
2.2气体地球化学测量技术
气体地球化学测量方法由于气体的强穿透性,可将大量的与深部矿化作用有关的物质携带到地表,可直接或间接指示各种地质成矿过程,而受到勘查地球化学的重视。众所周知,岩石的不断地脱气是一种普遍的自然现象,是地质体沉积、变质并与地下水相互作用的结果;矿床和形成矿床的流体在化学性质上与其周围环境明显不同。当这种脱气作用形成的气流通过不同地质体时,可将不同组分载入,造成矿床上方与区域背景气体信号之间存在某种差异。尽管这种差异很微弱,但采用一种独特的测量方法-土壤热释气体测量(SDP,soil-gas desorption pyrolysis),完全可以探测到这种微弱差异的信息。SDP技术是通过表层土壤并分析其中气体组分来实现对地下矿产的勘查的。
2.3应用实例
勘查技术有效性可以通过在实际找矿中的应用效果来检验。对于研究隐伏矿的勘查技术来说,直接采用钻探方法来找矿成本非常昂贵,SDP技术能在最大程度的节省初投资情况下准确无误地对地下情况进行研究。
图2所示矿区,位于澳大利亚Isa Block Eastern Succession山的南端,为一铜金矿床,围岩为中元古代的石英岩和铁石,岩层被30-40m厚的中生代沉积物所覆盖。矿区的西部和北部是含硫化物的薄层硅质矿带,并带有磁铁矿-黄铁矿这些与铁石有关的蚀变。东部主矿体是高品位、富含磁黄铁矿的硅质矿体。矿体覆盖层总厚度在东边约300m。
图2利用普通模式对Osborne矿床上的SDP调查的数据处理
SDP土壤调查点位分布见图2。采样间距不规则,背景区为100m,接近矿化和在矿化上方分别为50m和25m。气体测量结果采用斯潘赛床的标准模板处理,在Osborne矿床也得到良好的异常显示,说明在干旱地区,SDP技术能够具有较强勘查铜金矿床的能力。
目前,国内在硫化多金属矿床SDP化探研究和试验方面还鲜见报道。由于基于SDP法的土壤硫化气体化探技术具有找矿指标的多样性、找矿效果的直接性和找礦方法的可操作性,若结合其它物化探勘查方法,在寻找覆盖区隐伏矿方面必将发挥其独特的潜力和技术优势,具有巨大的应用前景
3地球物理勘查技术
目前除地面核磁共振方法找水是一种较直接的物探方法外,其它地球物理勘探方法都是一种通过寻找与矿产有关的地球物理参数异常来达到间接找矿目的,或者通过寻找与地质构造有关的地球物理参数异常来查明深部地质构造,从而为区内成矿规律研究提供依据,为矿产勘查提供方向。
3.1主要技术方法
1)地下电磁波法
地下电磁波法是利用无线电波在钻孔或坑道中发射和接收,根据不同位置上接收的场强,来确定地下不同介质分布的一种地下物探方法,常称为无线电波透视法。在金属矿勘查中,地下电磁波法以双孔法最为常用,可用于寻找井间盲矿体,判断两孔之间所见矿体是否相连,确定矿体产状等。
2)金属地震法
金属地震法是利用地下物质对地震波反射的差异,查明深部控矿构造、圈定容矿岩石甚至直接寻找深部盲矿体的金属矿的方法,其原理见图3。金属地震法最近在数据采集、处理和解释等诸多方面得到了很大的改进和完善。随着数据测量、处理和解释技术的改进和完善,金属地震方法正在逐步发展成为一种实用性的寻找深部隐伏矿体的有效方法。
图3金属地震法原理
3)时间域航空电磁法
中高山区高精度航空磁测方法是指使用专用磁测系统在中高山区获取高精度磁场数据,使用专用的数据处理和解释方法获得地质成果的技术统称。目前用于中高山区航磁测量系统有很多种,时间域航空电磁法就是其中的一种。时间域航空电磁法适用于金属硫化物矿床及与硫化物共生的贵金属矿床的普查、圈定断裂构造带、航空电磁电阻率填图、浅层水资源调查等。
时间域航空电磁法用于镍金属硫化物的勘查。块状硫化物的勘查一直以来都是航空电磁法寻找金属矿产的重要方向。Harmony矿是西澳大利亚Leinster矿床的一部分,1998年,时间域航空电磁法在该矿床上用25Hz基频4ms脉宽进行了测量,发现了一处夹在两层石英质水平层间的线性垂直块状硫化矿体。该矿体约有760×104t,镍含量约1.55%。图4给出了GEOTEM在该矿体上的实测数据。
图4时间域航空电磁法用于镍金属硫化矿勘查
4高光谱遥感技术
4.1应用现状
高光谱遥感是将光谱技术和成像技术相结合,以纳米级的超高光谱分辨率对目标进行成像,同时获取数十甚至上百个波段,形成连续光谱图像的技术。地质调查是高光谱遥感应用的一个重要领域。随着高光谱遥感技术的发展,成像光谱仪的光谱分辨率和空间分辨率越来越高,因此它的应用面也越来越广,岩矿识别、矿物丰度制图以及找矿勘查是成像光谱应用的主要方向,也是率先应用的领域。
4.2尚待解决的关键问题
1)高光谱矿产勘查模型的普适性
高光谱矿产勘查信息提取模型已经比较多,但没有一种具有普适性的方法。由于模型与模型间的设计条件区别较大,需要因地制宜地提取模型参数,况且大多数模型都要求大量实测数据去修正。因此目前所建立的模型几乎都以假设的理想条件为基础,而实际问题中却同时存在复杂性与多样性,急需解决的问题还很多。
2)光谱混合分解模型及其端元提取
矿产基地中土壤、残骸等形成的混合光谱机制复杂多样,尤其是地形复杂的地区,其多种组分的光谱混合分解模型研究有待深入。建模后端元光谱的确定是模型成功与否的关键,深入研究基于混合光谱的端元提取技术,对高光谱矿产信息提取的实用化以及定量化有重大价值。
5结论
目前高光谱遥感技术,蚀变流体填图技术,地球化学勘查技术和地球物理勘查技术等高新技术的综合运用是提高矿产勘查成功率的保障。但是这些技术都是以信息通讯技术的发展为依托的,信息通讯技术的发展直接制约矿产勘查的方法的进一步发展。因此,我们应以信息技术的发展为核心,最大限度地利用各种现有的数据资料,综合运用各种先进技术提高矿产勘查的成功率。
参考文献
[1] 惠卫东, 雷军文. 金属矿产勘查中的新技术与新方法[J]. 新疆有色金属 , 2008,(06)
[2] 成宇. 遥感技术的新应用[J]. 百科知识 , 2007,(07)
[3] 王学求.《矿产勘查地球化学:过去的成就与未来的挑战》[J].地学前缘, 2003(3)
[4] 赵永贵.中国工程地球物理研究的进展与未来[J].地球物理学发展,2002,17(2):305-3
09.
[5]陈颙,陈龙生,于晟. 2003.城市地球物理学发展展望.大地测量与地球动力学,23 (4) :1~4.
注:文章内所有公式及图表请以PDF形式查看。
关键词:金属矿产;勘查;新技术
Abstract: in the global mineral exploration difficulty rising situation, countries and pay attention to the development of a new generation of metal mineral exploration technology and method. This paper analyzes the metal mineral exploration of various kinds of new technology and new methods are introduced, and altered fluid mapping technology; Geochemical exploration technology; Geophysical exploration technology and hyperspectral remote sensing technology. To provide reference for future work.
Keywords: metal mineral; Exploration; New technology
中图分类号:O741+.2文献标识码:A 文章编号:
0引言
经济社会发展对矿产资源的需求持续快速增长,矿产资源保障程度总体呈现不足趋势。因此,重视发展新一代金属矿产的勘查技术与方法,探索和发现新矿床的新技术、新方法,无疑成为勘查取得成功的重要条件。矿产勘查正进入以技术为先导的新时代,未来大型矿床的发现将在很大程度上依赖于高新技术的应用及多技术的综合。因此本文注重提出各种新技术与新方法的分析,以此提供交流学习的机会。
1蚀变流体填图技术
流体广泛分布于地壳、地幔及地表中,流体研究是当今固体地球科学发展的前沿,而地幔柱、地壳中流体的大规模迁移与岩浆热液是地球流体研究的3个热点问题。地球各层圈中流体地质的性状与作用的研究,已成为当前国际地球科学研究的重要前沿领域,大尺度区域性的流体地质调查与研究是这一领域的热点之一。由此可见,蚀变流体填图是区域性流体地质研究的基础,是一种具有探索性和创新性的新的地质调查方法。
图1所示是1∶50000铜陵地区蚀变流体填图项目,识别出区域上存在5种类型的热液流体,根据流体活动特征,将所发育的流体记录归并为4个流体系统、7个流体子系统和18个流体单元。这些流体系统基本代表了长江中下游铜陵地区流体活动的时间序列及与地层、构造、岩浆岩的关系,它们的空间展布特征反映了不同时期流体活动的规模、形式及中心区域。
2地球化学勘查技术
2.1理论基础
勘查地球化学的理论基础是成矿物质在成矿过程中,在围岩中留下元素运移轨迹或在成矿以后,通过分散在四周岩石、土壤、水系沉积物、水、植物及气体中形成各种类型的地球化学分散模式,根据这些元素变化轨迹或分散模式去追踪和发现新的矿床。
图1安徽铜陵新桥硫铁矿蚀变流体地质简图
2.2气体地球化学测量技术
气体地球化学测量方法由于气体的强穿透性,可将大量的与深部矿化作用有关的物质携带到地表,可直接或间接指示各种地质成矿过程,而受到勘查地球化学的重视。众所周知,岩石的不断地脱气是一种普遍的自然现象,是地质体沉积、变质并与地下水相互作用的结果;矿床和形成矿床的流体在化学性质上与其周围环境明显不同。当这种脱气作用形成的气流通过不同地质体时,可将不同组分载入,造成矿床上方与区域背景气体信号之间存在某种差异。尽管这种差异很微弱,但采用一种独特的测量方法-土壤热释气体测量(SDP,soil-gas desorption pyrolysis),完全可以探测到这种微弱差异的信息。SDP技术是通过表层土壤并分析其中气体组分来实现对地下矿产的勘查的。
2.3应用实例
勘查技术有效性可以通过在实际找矿中的应用效果来检验。对于研究隐伏矿的勘查技术来说,直接采用钻探方法来找矿成本非常昂贵,SDP技术能在最大程度的节省初投资情况下准确无误地对地下情况进行研究。
图2所示矿区,位于澳大利亚Isa Block Eastern Succession山的南端,为一铜金矿床,围岩为中元古代的石英岩和铁石,岩层被30-40m厚的中生代沉积物所覆盖。矿区的西部和北部是含硫化物的薄层硅质矿带,并带有磁铁矿-黄铁矿这些与铁石有关的蚀变。东部主矿体是高品位、富含磁黄铁矿的硅质矿体。矿体覆盖层总厚度在东边约300m。
图2利用普通模式对Osborne矿床上的SDP调查的数据处理
SDP土壤调查点位分布见图2。采样间距不规则,背景区为100m,接近矿化和在矿化上方分别为50m和25m。气体测量结果采用斯潘赛床的标准模板处理,在Osborne矿床也得到良好的异常显示,说明在干旱地区,SDP技术能够具有较强勘查铜金矿床的能力。
目前,国内在硫化多金属矿床SDP化探研究和试验方面还鲜见报道。由于基于SDP法的土壤硫化气体化探技术具有找矿指标的多样性、找矿效果的直接性和找礦方法的可操作性,若结合其它物化探勘查方法,在寻找覆盖区隐伏矿方面必将发挥其独特的潜力和技术优势,具有巨大的应用前景
3地球物理勘查技术
目前除地面核磁共振方法找水是一种较直接的物探方法外,其它地球物理勘探方法都是一种通过寻找与矿产有关的地球物理参数异常来达到间接找矿目的,或者通过寻找与地质构造有关的地球物理参数异常来查明深部地质构造,从而为区内成矿规律研究提供依据,为矿产勘查提供方向。
3.1主要技术方法
1)地下电磁波法
地下电磁波法是利用无线电波在钻孔或坑道中发射和接收,根据不同位置上接收的场强,来确定地下不同介质分布的一种地下物探方法,常称为无线电波透视法。在金属矿勘查中,地下电磁波法以双孔法最为常用,可用于寻找井间盲矿体,判断两孔之间所见矿体是否相连,确定矿体产状等。
2)金属地震法
金属地震法是利用地下物质对地震波反射的差异,查明深部控矿构造、圈定容矿岩石甚至直接寻找深部盲矿体的金属矿的方法,其原理见图3。金属地震法最近在数据采集、处理和解释等诸多方面得到了很大的改进和完善。随着数据测量、处理和解释技术的改进和完善,金属地震方法正在逐步发展成为一种实用性的寻找深部隐伏矿体的有效方法。
图3金属地震法原理
3)时间域航空电磁法
中高山区高精度航空磁测方法是指使用专用磁测系统在中高山区获取高精度磁场数据,使用专用的数据处理和解释方法获得地质成果的技术统称。目前用于中高山区航磁测量系统有很多种,时间域航空电磁法就是其中的一种。时间域航空电磁法适用于金属硫化物矿床及与硫化物共生的贵金属矿床的普查、圈定断裂构造带、航空电磁电阻率填图、浅层水资源调查等。
时间域航空电磁法用于镍金属硫化物的勘查。块状硫化物的勘查一直以来都是航空电磁法寻找金属矿产的重要方向。Harmony矿是西澳大利亚Leinster矿床的一部分,1998年,时间域航空电磁法在该矿床上用25Hz基频4ms脉宽进行了测量,发现了一处夹在两层石英质水平层间的线性垂直块状硫化矿体。该矿体约有760×104t,镍含量约1.55%。图4给出了GEOTEM在该矿体上的实测数据。
图4时间域航空电磁法用于镍金属硫化矿勘查
4高光谱遥感技术
4.1应用现状
高光谱遥感是将光谱技术和成像技术相结合,以纳米级的超高光谱分辨率对目标进行成像,同时获取数十甚至上百个波段,形成连续光谱图像的技术。地质调查是高光谱遥感应用的一个重要领域。随着高光谱遥感技术的发展,成像光谱仪的光谱分辨率和空间分辨率越来越高,因此它的应用面也越来越广,岩矿识别、矿物丰度制图以及找矿勘查是成像光谱应用的主要方向,也是率先应用的领域。
4.2尚待解决的关键问题
1)高光谱矿产勘查模型的普适性
高光谱矿产勘查信息提取模型已经比较多,但没有一种具有普适性的方法。由于模型与模型间的设计条件区别较大,需要因地制宜地提取模型参数,况且大多数模型都要求大量实测数据去修正。因此目前所建立的模型几乎都以假设的理想条件为基础,而实际问题中却同时存在复杂性与多样性,急需解决的问题还很多。
2)光谱混合分解模型及其端元提取
矿产基地中土壤、残骸等形成的混合光谱机制复杂多样,尤其是地形复杂的地区,其多种组分的光谱混合分解模型研究有待深入。建模后端元光谱的确定是模型成功与否的关键,深入研究基于混合光谱的端元提取技术,对高光谱矿产信息提取的实用化以及定量化有重大价值。
5结论
目前高光谱遥感技术,蚀变流体填图技术,地球化学勘查技术和地球物理勘查技术等高新技术的综合运用是提高矿产勘查成功率的保障。但是这些技术都是以信息通讯技术的发展为依托的,信息通讯技术的发展直接制约矿产勘查的方法的进一步发展。因此,我们应以信息技术的发展为核心,最大限度地利用各种现有的数据资料,综合运用各种先进技术提高矿产勘查的成功率。
参考文献
[1] 惠卫东, 雷军文. 金属矿产勘查中的新技术与新方法[J]. 新疆有色金属 , 2008,(06)
[2] 成宇. 遥感技术的新应用[J]. 百科知识 , 2007,(07)
[3] 王学求.《矿产勘查地球化学:过去的成就与未来的挑战》[J].地学前缘, 2003(3)
[4] 赵永贵.中国工程地球物理研究的进展与未来[J].地球物理学发展,2002,17(2):305-3
09.
[5]陈颙,陈龙生,于晟. 2003.城市地球物理学发展展望.大地测量与地球动力学,23 (4) :1~4.
注:文章内所有公式及图表请以PDF形式查看。