论文部分内容阅读
针对人脸识别中的光照、表情和遮挡变化三大难题,引进热红外人脸克服光照变化,并采用融合局部形变模型的人脸分类方法克服表情和遮挡变化。该方法将热红外测试人脸看成人脸库的线性组合,并用形变模型表示,通过l1最小优化求解组合系数,根据系数的稀疏性进行人脸识别。为了进一步提高算法的鲁棒性,采用人脸分片加权的策略。在Equinox人脸库上通过大量实验表明:基于红外光的人脸识别性能明显高于可见光对光照变化的影响;融合局部形变模型的人脸识别方法可以有效地提高识别率,并且克服红外人脸识别中的眼镜干扰与表情变化问题。