论文部分内容阅读
针对融合系统建模误差、噪声统计特性不精确性和环境的动态变化性致使传统联合滤波过程中融合权值难以确定,引入人工智能中的神经网络,提出了基于神经网络的多信息自适应智能估计融合算法研究;利用神经网络的自适应能力对状态估计融合结果进行实时辅助补偿和修正,将非线性最优估计与神经网络技术相结合,重点研究了基于UKF的神经元融合权重在线自适应学习算法,以便在缺少准确局部子滤波器协方差信息情况下,仍能使全局估计融合结果最优,从理论上证明了UKF学习算法优于传统EKF学习方法,并以卫星多姿态测量信息融合定姿系统为例,