论文部分内容阅读
经验模态分解(Empirical Mode Decomposition,EMD)是一种具有较大应用潜力的去噪算法.目前,该算法存在的一个较大问题是过渡内蕴模态函数(Intrinsic Mode Function,IMF)中混叠噪声不能有效处理.过渡内蕴模态函数中混叠噪声不易剔除,限制了该算法的应用.本文针对此问题,通过研究过渡IMF的特点,首次提出一种有效去除过渡IMF中混叠噪声的方法.该方法首先对原信号进行一次EMD处理,得到包含过渡IMF的初步去噪结果,并将其与合适的余弦信号结合,改变其包络分布,然后