论文部分内容阅读
本文通过实验比较了互信息、X^2统计算法和优势率三种算法在用于局部文本特征选取时对文本分类性能的影响。实验结果显示,在应用于局部特征选择的情况下,文本特征选取算法仍然可以将特征空间的维度降低90%以上,而不降低文本分类的性能。同时,我们发现在应用于局部文本特征选取时,优势率算法的性能不如互信息和X^2统计算法。另外,对于K最近邻分类算法,随着足值的增大,文本分类的查准率在增加,而查全率在降低。最后,本文详细分析了造成这三种算法性能差异的原因,并提出了一种改进算法,来提高优势率算法应用于局部文本特征选取时的