论文部分内容阅读
目的在基于舌图像的中医体质类型分类中,舌图像的类间距小,传统手工特征提取时存在底层特征不能够充分表达舌图像所包含的全部信息等问题。因此本文提出一种基于深度网络特征层融合的体质类型分类方法,以提高体质类型分类的准确率。方法通过比较不同网络模型对舌图像的分类表现,及对不同网络层的特征表达能力的分析,选取将浅层特征与高层语义特征进行融合的方法。该深度特征融合方法基于Alexnet网络进行改进,依据误差权重对各层特征进行融合,并采用983张舌图像,对气虚质、痰湿质和湿热质三种体质类型的分类进行仿真实验。结果