论文部分内容阅读
随着信息技术的发展,人脸识别在支付、工作和安防系统中应用的越来越多。在边缘计算系统中,为了处理的速度,通常选择较小的神经网络进行人脸识别,这样会导致识别率低。并且在实际应用中大多都是对于图片质量较高的人脸可以很好地识别,但对于受光照影响较大、表情和姿态变化大的图片识别率不是很高。因此,选择SqueezeNet轻量级网络,该网络层数小,可以很好地运用于边缘计算系统中。采用了预处理的方法来对图片进行预处理,然后改进了SqueezeNet网络的损失函数以及加入了ResNet网络中的残差学习方法。最后通过对