论文部分内容阅读
将K-均值聚类方法与分形理论相结合,提出了一种分两个阶段对扩展目标进行分割的方法。在预分割阶段,运用粗糙集理论求取初始聚类中心,在K-均值聚类分割和区域连通的基础上,检测图像边缘并进行边界跟踪,对于获得的目标和背景团块根据扩展目标特性确定目标潜在区域。在进一步分割阶段,给出图像分维数随尺度变化的函数,利用自适应阈值,根据分形理论的尺度不变性进一步抑制预分割结果中的自然背景,并运用形态学开运算消除背景粘连。实验表明该方法能有效并可靠地实现复杂背景下扩展目标的精确分割,分割出的扩展目标轮廓细节保持良好。