论文部分内容阅读
A novel hole-transport material (HTM) based on an anthradithiophene central bridge named BTPA-7 is developed.In comparison to spiro-OMeTAD (2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene),the synthetic steps of BTPA-7 are greatly reduced from 6 to 3 and the synthetic cost of BTPA-7 is nearly a half that of spiro-OMeTAD.Moreover,BTPA-7 exhibits a relatively lower conductivity but higher hole mobility and higher glass transition temperature (Tg) than spiro-OMeTAD.Compared with the photovolatic performance for spiro-OMeTAD,FA0.85MA0.15PbI3 and MAPbI3 PSC devices based on BTPA-7 exhibit slightly lower PCEs with the values of 17.58% (18.88% for spiro-OMeTAD) and 11.90% (13.25% for spiro-OMeTAD),respectively.Nevertheless,a dramatically higher Jsc of PSC based on BTPA-7 is achieved,which arises from the higher hole mobility of BTPA-7.In addition,the relatively hydrophobic character of BTPA-7 eventually enhances the PSC device stability.Lower cost,higher hole mobility,higher Tg,satisfactory photovoltaic performance,and superior device stability of BTPA-7 can be utilized as a substitute for spiro-OMeTAD in PSCs.