论文部分内容阅读
城市用水量预测受众多因素影响,具有非线性的特点。将气温、天气状况、节假日因素引入城市短期用水量预测,建立了面向MATLAB神经网络工具箱的BP神经网络预测模型。根据历史数据训练预测模型和进行仿真实验,并生成了预测数据与实际数据的拟合曲线。结果表明,BP神经网络模型在城市用水量预测中具有可靠性。