论文部分内容阅读
在处理高维小样本、高冗余、高噪声的基因微阵列数据时,无法采用传统特征选择方法进行分析。针对该问题提出了一种结合Relief和粒子群优化算法(Relief-PSO)的混合特征选择方法。首先采用Relief预选滤除部分特征,然后以SVM-PSO封装算法选择出最优特征子集,采用典型的小样本高维公共微阵列数据测试算法。结果表明,总体分类精度不低于85%,与SVMRFE,SVMDEA特征选择算法进行了比较,基于Relief和PSO的混合特征选择算法精度较高,能够有效应用于基因微阵列数据的分析。