论文部分内容阅读
1 建筑物防雷等级的确定问题
在防雷设计中,一、二类防雷建筑物的设计考虑得基本全面,而对于三类防雷及等级以外的建筑物防雷,大多设计人员不对此类建筑物年预计雷击次数N进行计算,使许多不需设计防雷的建筑物而设计了防雷措施,设计保守,浪费了大量人力、财力、物力。
例如:在地势平坦的住宅小区内部设计一栋住宅楼:建筑物高度H=7m、10m、15m、20m四种不同的高度,三个单元,其中:长L=60m,宽w=13m,当地年平均雷暴日Ta=41.5d/a,校正系数K值分别取1.1.5,1.7,2,进行计算N值,计算结果见附表1从表1中的数据可知,
a当K=1时,举例中的15米建筑物均N<0.05需设置防雷设施。
b,当K=1.5时,即建筑物在河边、湖边、山坡下或山地中土壤电阻率较小处、地下水露头处、土山顶部、山谷风口等处的或特别潮湿的建筑物,在高度达15m或以上者,必须按第三类防雷建筑物采取防雷措施。
c,当K=1.7时,即金属屋面的砖木结构的建筑物,高度达10m以上者,必须按第三类防雷建筑物采取防雷措施。
d,当K=2时,即建筑物位于旷野孤立的位置,高度达7m两层以上者。均必须按第三类防雷建筑物采取防雷措施。
由此可见,有的建筑物在15m的高度,却不需设置防雷措施,而有的建筑物高度在7 m,就必须设置三级防雷措施。关键因素在于建筑所处的地理位置、环境、土质和雷电活动情况及建筑物结构材料所决定。
因此,设计人员对民用建筑物的防雷设计必须根据当地年平均雷暴日数对建筑物年预计雷击次数进行计算,根据计算结果,结合建筑物具体所处的地理环境,确定是否设置防雷设施。
2 防雷电电磁脉冲
随着现代科学技术的进步,电子技术日益向高频率、高精度、高灵敏度和高可靠性方向发展,成为当今智能化建筑不可缺少的组成部分,进而也就使雷电电磁脉冲的干扰成为建筑物内部电子设备的突出事故,因此必须得到电磁兼容和安全可靠的防护措施,这一点往往在防雷设计中容易被忽视。
雷电电磁脉冲的干扰主要指以下3种情况:①自然界天空中雷电波的磁辐射对建筑物内部电气设备的电磁干扰:②当建筑物防雷装置接闪后,强大的雷电流对内部电气设备的电磁干扰:由外部的各种架空或电缆线路引来的电磁波对内部电气设备干扰等。
防这些电磁干扰的理想设计方案是在做好建筑物外部防雷措施的基础上,首先就是尽量利用建筑物的各种钢筋混凝土结构中的顶板、地板、墙面和梁柱内的钢筋网使其构成一个6面体的网笼,即笼式避雷网,使其达到屏蔽条件。屏蔽做得好,不仅能防空间电磁波的辐射,对建筑内部的分流和均压也能达到最佳效果。当然屏蔽应根据不同性质的设备,在电子设备较为集中的房间、区域设置,否则会大大增加建筑物不必要的投资。
其次,防雷电电磁脉冲对室内的布线要求显得非常重要,由于作为引下线的钢筋混凝土柱子内的钢筋和全楼的屏蔽网都在外墙处,雷电流由此钢筋引到接地装置上,所以外墙处的电流密度大,其周围的电磁场也强,因此建筑物中的电源和通信等的主干线不要放在靠近外墙处,最好设在太楼的中心部位,若电梯井在中心部位。可以靠在电梯并的旁边,建筑物内的各种馈线都最好穿金属管敷设,特殊要求的线路电源则还应加隔离变压器、稳压、稳频和滤波装置等;再就是要做好电子设备的各种接地、低压供电系统应采用TN-S系统:为了防雷电电磁脉冲的侵入,建筑物的电源、电话、广播线等最好采用埋地电缆引入,并采用铠装电缆,外皮接地。3总等电位连接在共用接地装置防雷系统中的作用
在GB 50057-94的规定中,对于二类建筑的防直击雷措施的装置应放在建筑物上且须采取严格的总等电位连接措施,否则,当雷电冲击电流流过共同接地装置时,使接地装置的电位升高;造成雷电反击,引起火花放电导致火灾,还会造成严重的触电事故。现简要分析如下:
我们知道当雷电流流过防雷装置时,在防雷装置地上高度hx处的电位为:
U=UR+UL=IR1+Lohxdi/dt其中:ur为雷电流流过防雷装置时接地装置上的电阻电压降kv
ul为雷电流流过防雷装置时引下线上的电感电压降(kv)
Ri为接地装置的冲击接地电阻
di/dt为雷电流陡度kA/us
I为雷电流幅值(KA)
L0为引下线的单位长度上的电感(u H/m),取其等于1.5u H/m。
依规范中给出的各项最小值计算。取I=100kA;R=1;因计算的是在公用接地电阻上的压降,故不考虑Loxhx*di/dt部分,也不考虑分流系数的影响,得UR=IR1=100x1=100(kv);这样高的电压沿PE线传播,如果不采取总等电位联结或总等电位联结不可靠彻底,假设某钢窗结构未可靠联结,临近又有用电设备,则在雷电接闪时,用电设备外壳上与钢窗之间的瞬间电位差将为100kV。人如果同时触及后果不堪设想,即便人不触及,如果电气设备外壳与此钢窗相距较近,则它们中间的空气间隙也易被击穿,引起火花放电,导致火灾发生。另外,根据IEC标准,室内低压装置的耐冲击电压最高仅为6kV,而通过上面计算得出的100kV冲击电压足以击穿低压配电装置的绝缘设施,造成短路,发生火花,损坏设备,是非常危险的。所以在总电源箱进线处的相导体与地之间必须装设过电压保护器,这在规范中有明确规定,是防雷设计中比较重要的问题之一。
4 在线SPD检测问题
SPD主要指浪涌保护器,为现代防雷的主要组成部分。安装在低压供电线路的SPD,其用材有放电管与氧化锌阀片组合件以及氧化锌阀片组合件。信息传输线路上的SPD其用材有放电管,放电管、压敏电阻组合件,放电管、抑制二极管组合件,放电管、压敏电阻及抑制二极管组合件。只有纯氧化锌阀片组合件的SPD才可用“压敏电压测试仪”进行离线检测,对于不可插拔的SPD离线检测相对麻烦:如果仅测试氧化锌阀片压敏电压,尚不能判定SPD的是否合格。同理,用“泄漏电流Ite测试仪”也仅可离线测试氧化锌阀片的漏电流1le值。市场上有一种便携式“雷电电涌测试仪”,测试仪提供1.2/50u s-8/20p s组合波的6 kV/3kA可调模拟电涌,厂家说明书称:可做放电间隙放电(动作)电压、MOV型SPD限制电压残压的测试。当然,一般也需要离线检测。SPD长期在线运行,一方面抗御雷击脉冲的侵扰,另一方面也在自然老化,SPD运行期间,会因长时间工作或因处在恶劣环境中老化,也可能因受雷击电涌而引起性能下降、失效等故障。一旦SPD处于劣化,使用ZnO压敏材料的器件,由于压敏电阻性能劣化。可导致温度升高,引起压敏电阻热崩溃,从而导致漏电流增大且防护功能失效,严重时可发生器件爆炸、起火。一旦发生雷灾,如何鉴定SPD是否失效,一直是防雷界的困扰问题。近年来国内外防雷界的科学工作者正积极展开更科学的探索与研究。笔者认为“在线雷击过电流智能监测、管理系统”才是实时、动态监测记录雷击、判别在线SPD正常与否的最有效工具。
5 总结
通过对实际问题的分析,可总结归纳为以下几点在防雷设计中应该重视的问题:
在对建筑物防雷等级的确定中,由于一些原因而产生偏差:
在现代建筑物的防雷设计除了传统的防直雷击,防雷电感和防雷电波侵入外,还应包括防雷电电磁脉;中:
对于采用共用接地装置的建筑物来说,必须经行可靠彻底的总等电位联结,并应在电源引人的总配电箱处装设过电压保护器。
综上所述,建筑物的防雷设计是一项系统性工程,必须和建筑物的整体结构、供配电系统、布线系统等设计统一考虑,才能达到良好的保护效果。
(编辑/陈志华)
在防雷设计中,一、二类防雷建筑物的设计考虑得基本全面,而对于三类防雷及等级以外的建筑物防雷,大多设计人员不对此类建筑物年预计雷击次数N进行计算,使许多不需设计防雷的建筑物而设计了防雷措施,设计保守,浪费了大量人力、财力、物力。
例如:在地势平坦的住宅小区内部设计一栋住宅楼:建筑物高度H=7m、10m、15m、20m四种不同的高度,三个单元,其中:长L=60m,宽w=13m,当地年平均雷暴日Ta=41.5d/a,校正系数K值分别取1.1.5,1.7,2,进行计算N值,计算结果见附表1从表1中的数据可知,
a当K=1时,举例中的15米建筑物均N<0.05需设置防雷设施。
b,当K=1.5时,即建筑物在河边、湖边、山坡下或山地中土壤电阻率较小处、地下水露头处、土山顶部、山谷风口等处的或特别潮湿的建筑物,在高度达15m或以上者,必须按第三类防雷建筑物采取防雷措施。
c,当K=1.7时,即金属屋面的砖木结构的建筑物,高度达10m以上者,必须按第三类防雷建筑物采取防雷措施。
d,当K=2时,即建筑物位于旷野孤立的位置,高度达7m两层以上者。均必须按第三类防雷建筑物采取防雷措施。
由此可见,有的建筑物在15m的高度,却不需设置防雷措施,而有的建筑物高度在7 m,就必须设置三级防雷措施。关键因素在于建筑所处的地理位置、环境、土质和雷电活动情况及建筑物结构材料所决定。
因此,设计人员对民用建筑物的防雷设计必须根据当地年平均雷暴日数对建筑物年预计雷击次数进行计算,根据计算结果,结合建筑物具体所处的地理环境,确定是否设置防雷设施。
2 防雷电电磁脉冲
随着现代科学技术的进步,电子技术日益向高频率、高精度、高灵敏度和高可靠性方向发展,成为当今智能化建筑不可缺少的组成部分,进而也就使雷电电磁脉冲的干扰成为建筑物内部电子设备的突出事故,因此必须得到电磁兼容和安全可靠的防护措施,这一点往往在防雷设计中容易被忽视。
雷电电磁脉冲的干扰主要指以下3种情况:①自然界天空中雷电波的磁辐射对建筑物内部电气设备的电磁干扰:②当建筑物防雷装置接闪后,强大的雷电流对内部电气设备的电磁干扰:由外部的各种架空或电缆线路引来的电磁波对内部电气设备干扰等。
防这些电磁干扰的理想设计方案是在做好建筑物外部防雷措施的基础上,首先就是尽量利用建筑物的各种钢筋混凝土结构中的顶板、地板、墙面和梁柱内的钢筋网使其构成一个6面体的网笼,即笼式避雷网,使其达到屏蔽条件。屏蔽做得好,不仅能防空间电磁波的辐射,对建筑内部的分流和均压也能达到最佳效果。当然屏蔽应根据不同性质的设备,在电子设备较为集中的房间、区域设置,否则会大大增加建筑物不必要的投资。
其次,防雷电电磁脉冲对室内的布线要求显得非常重要,由于作为引下线的钢筋混凝土柱子内的钢筋和全楼的屏蔽网都在外墙处,雷电流由此钢筋引到接地装置上,所以外墙处的电流密度大,其周围的电磁场也强,因此建筑物中的电源和通信等的主干线不要放在靠近外墙处,最好设在太楼的中心部位,若电梯井在中心部位。可以靠在电梯并的旁边,建筑物内的各种馈线都最好穿金属管敷设,特殊要求的线路电源则还应加隔离变压器、稳压、稳频和滤波装置等;再就是要做好电子设备的各种接地、低压供电系统应采用TN-S系统:为了防雷电电磁脉冲的侵入,建筑物的电源、电话、广播线等最好采用埋地电缆引入,并采用铠装电缆,外皮接地。3总等电位连接在共用接地装置防雷系统中的作用
在GB 50057-94的规定中,对于二类建筑的防直击雷措施的装置应放在建筑物上且须采取严格的总等电位连接措施,否则,当雷电冲击电流流过共同接地装置时,使接地装置的电位升高;造成雷电反击,引起火花放电导致火灾,还会造成严重的触电事故。现简要分析如下:
我们知道当雷电流流过防雷装置时,在防雷装置地上高度hx处的电位为:
U=UR+UL=IR1+Lohxdi/dt其中:ur为雷电流流过防雷装置时接地装置上的电阻电压降kv
ul为雷电流流过防雷装置时引下线上的电感电压降(kv)
Ri为接地装置的冲击接地电阻
di/dt为雷电流陡度kA/us
I为雷电流幅值(KA)
L0为引下线的单位长度上的电感(u H/m),取其等于1.5u H/m。
依规范中给出的各项最小值计算。取I=100kA;R=1;因计算的是在公用接地电阻上的压降,故不考虑Loxhx*di/dt部分,也不考虑分流系数的影响,得UR=IR1=100x1=100(kv);这样高的电压沿PE线传播,如果不采取总等电位联结或总等电位联结不可靠彻底,假设某钢窗结构未可靠联结,临近又有用电设备,则在雷电接闪时,用电设备外壳上与钢窗之间的瞬间电位差将为100kV。人如果同时触及后果不堪设想,即便人不触及,如果电气设备外壳与此钢窗相距较近,则它们中间的空气间隙也易被击穿,引起火花放电,导致火灾发生。另外,根据IEC标准,室内低压装置的耐冲击电压最高仅为6kV,而通过上面计算得出的100kV冲击电压足以击穿低压配电装置的绝缘设施,造成短路,发生火花,损坏设备,是非常危险的。所以在总电源箱进线处的相导体与地之间必须装设过电压保护器,这在规范中有明确规定,是防雷设计中比较重要的问题之一。
4 在线SPD检测问题
SPD主要指浪涌保护器,为现代防雷的主要组成部分。安装在低压供电线路的SPD,其用材有放电管与氧化锌阀片组合件以及氧化锌阀片组合件。信息传输线路上的SPD其用材有放电管,放电管、压敏电阻组合件,放电管、抑制二极管组合件,放电管、压敏电阻及抑制二极管组合件。只有纯氧化锌阀片组合件的SPD才可用“压敏电压测试仪”进行离线检测,对于不可插拔的SPD离线检测相对麻烦:如果仅测试氧化锌阀片压敏电压,尚不能判定SPD的是否合格。同理,用“泄漏电流Ite测试仪”也仅可离线测试氧化锌阀片的漏电流1le值。市场上有一种便携式“雷电电涌测试仪”,测试仪提供1.2/50u s-8/20p s组合波的6 kV/3kA可调模拟电涌,厂家说明书称:可做放电间隙放电(动作)电压、MOV型SPD限制电压残压的测试。当然,一般也需要离线检测。SPD长期在线运行,一方面抗御雷击脉冲的侵扰,另一方面也在自然老化,SPD运行期间,会因长时间工作或因处在恶劣环境中老化,也可能因受雷击电涌而引起性能下降、失效等故障。一旦SPD处于劣化,使用ZnO压敏材料的器件,由于压敏电阻性能劣化。可导致温度升高,引起压敏电阻热崩溃,从而导致漏电流增大且防护功能失效,严重时可发生器件爆炸、起火。一旦发生雷灾,如何鉴定SPD是否失效,一直是防雷界的困扰问题。近年来国内外防雷界的科学工作者正积极展开更科学的探索与研究。笔者认为“在线雷击过电流智能监测、管理系统”才是实时、动态监测记录雷击、判别在线SPD正常与否的最有效工具。
5 总结
通过对实际问题的分析,可总结归纳为以下几点在防雷设计中应该重视的问题:
在对建筑物防雷等级的确定中,由于一些原因而产生偏差:
在现代建筑物的防雷设计除了传统的防直雷击,防雷电感和防雷电波侵入外,还应包括防雷电电磁脉;中:
对于采用共用接地装置的建筑物来说,必须经行可靠彻底的总等电位联结,并应在电源引人的总配电箱处装设过电压保护器。
综上所述,建筑物的防雷设计是一项系统性工程,必须和建筑物的整体结构、供配电系统、布线系统等设计统一考虑,才能达到良好的保护效果。
(编辑/陈志华)