【摘 要】
:
Layered double hydroxides (LDHs) hinder corrosive elements by forming a double layer and locking them between its layers. Hence, LDHs are interesting materials in corrosion inhibition. In this work, Zn–Mg-based LDHs are grown over a copper substrate by us
【机 构】
:
School of Materials Science and Technology,Indian Institute of Technology(BHU)Varanasi,Varanasi-2210
论文部分内容阅读
Layered double hydroxides (LDHs) hinder corrosive elements by forming a double layer and locking them between its layers. Hence, LDHs are interesting materials in corrosion inhibition. In this work, Zn–Mg-based LDHs are grown over a copper substrate by using a hydrothermal method. Two types of Zn–Mg-based LDH coating are prepared based on hydrothermal reaction time. Both types are character-ized through Fourier transform infrared spectroscopy, Raman spectroscopy, high-resolution scanning electron microscopy, energy dispersive X-ray analysis, atomic force microscopy, and X-ray diffraction. Results show that the two types of LDH coating are successfully grown on copper; however, they differ in thickness and structural configuration. Corrosion testing of the LDH coatings is executed in 0.1 M NaCl and 0.1 M NaOH through alternating current impedance measurements and Tafel polarization curves. Results show that L48 gives more than 90% pro-tection to copper, which is higher than the protection provided by L24. However, both LDH coatings (L24 and L48) are more effective corro-sion inhibitors in NaCl than in NaOH, suggesting that the LDH coatings can more efficiently exchange Cl ions than OH ions.
其他文献
With the rapid development of 3C industries, the demand for high-thermal-conductivity magnesium alloys with high mechanical performance is increasing quickly. However, the thermal conductivities of most common Mg foundry alloys (such as Mg–9wt%–1wt%Zn) ar
A green method of super-gravity separation, which can enhance the filtration process of bismuth and copper phases, was investig-ated and discussed for the rapid removal of copper impurity from bismuth–copper alloy melts. After separation by the super-grav
Al–Mg alloys are an important class of non-heat treatable alloys in which Mg solute and grain size play essential role in their mech-anical properties and plastic deformation behaviors. In this work, a cyclical continuous expanded extrusion and drawing (C
Multicomponent Al20Cr20Fe25Ni25Mn10 alloys were synthesized using spark plasma sintering at different temperatures (800, 900, and 1000℃) and holding times (4, 8, and 12 min) to develop a high entropy alloy (HEA). The characteristics of spark plasma-synthe
The evolution of inclusions and the formation of acicular ferrite (AF) in Ca–Ti treated steel was systematically investigated after Mg and La addition. The inclusions in the molten steel were Ca–Al–O, Ca–Al–Mg–O, and La–Mg–Ca–Al–O after Ca, Mg, and La add
The evolution behavior of the γ″ phase of IN718 superalloy in a temperature/stress coupled field was investigated. Results showed that the coarsening rate of the γ″ phase was significantly accelerated in the temperature/stress coupled field. Based on the
Bimetal materials derived from transition metals can be good catalyst candidates towards some specific reactions. When loaded on graphene (GP), these catalysts exhibit remarkable performance in the hydrolysis of sodium borohydride. To obtain such catalyst
Nanoparticles of potassium ferrite (KFeO2) in this work were synthesized by a simple egg white solution method upon calcination in air at 773, 873, and 973 K for 2 h. The effects of calcination temperature on the structural and magnetic properties of the
The optimized growth parameters of graphene with different morphologies, such as dendrites, rectangle, and hexagon, have been ob-tained by low-pressure chemical vapor deposition on polycrystalline copper substrates. The evolution of fractal graphene, whic
This study explores the fabrication of Fe-based amorphous/crystalline coating by air plasma spraying and its dependency on the coating parameters (plasma power, primary gas flow rate, powder feed rate, and stand-off distance). X-ray diffraction of the coa