Preventing inhomogeneous elemental distribution and phase segregation in mixed pb-Sn inorganic perov

来源 :能源化学 | 被引量 : 0次 | 上传用户:manhong85
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Inhomogeneous Pb/Sn elemental distribution and the resulted phase segregation in mixed Pb-Sn halide perovskites would result in energy disorder (band structure and phase distribution disorder),which greatly limits their photovoltaic performance.Here,PbS quantum dot has been synthesized and demon-strated as seeds for modulation crystallization dynamics of the mixed Pb-Sn inorganic perovskites,allow-ing an enhanced film quality and significantly suppressing phase segregation.With this additive power conversion efficiency of 8% and 6% is obtained under irradiation of full sunlight in planar and mesoporous structured solar cells in combination with CsPb0.5Sn0.5I2Br inorganic perovskite,respectively.Our finding reveals exploring the actual Pb/Sn atoms location in perovskite structure and its influence on developing efficient and stable low-bandgap perovskite solar cells.
其他文献
In this review,the history and outlook of gas-phase CO2 activation using single electrons,metal atoms,clusters (mainly metal hydride clusters),and molecules are discussed on both of the experimental and theoretical fronts.Although the development of bulk
S@pPAN has become promising cathode materials in rechargeable batteries due to its high compressed density,low E/S ratio,no polysulfide dissolution,no self-discharge,and stable cycling.However,it is a big challenge to enhance its sulfur content which dete
Design and synthesis of low bandgap (LBG) polymer donors is inevitably challenging and their process-ability from a non-halogenated solvent system remains a hurdle to overcome in the area of high-performance polymer solar cells (PSCs),Due to a high aggreg
The expedited consumption of fossil fuels has triggered broad interest in the fabrication of novel catalysts for electrochemical energy storage and conversion.Especially,single-atom catalysts (SACs) have attracted more attention owing to their high specif
Electrocatalytic oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) in acidic media are vital for the applications of renewable energy electrolyzers.However,the low mass activity of noble Pt urgently needs to be improved due to the stro
Lignocellulosic biomass photoreforming is a promising and alternative strategy for both sustainable H2 production and biomass valorization with infinite solar energy.However,harsh reaction conditions (high alkalinity or toxic organic solvents),with low bi
Two-dimensional coordination polymers (CPs) have aroused tremendous interest as electrocatalysts because the catalytic performance could be fine-tuned by their well-designed coordination layers with highly accessible and active metal sites.However,it rema
Energy sustainable development has stimulated the pursuit of an eco-friendly energy storage system.Carbon peak and neutrality targets oriented energy storage development will guide the way of further studies on batteries system.However,conventional batter
An extensive analysis of iron-nitrogen-carbon (Fe-N-C) electrocatalysts synthesis and activity is pre-sented concerning synthesis conditions such as initial Fe content,pyrolysis temperature and atmosphere(inert N2,reducing NH3,oxidizing Cl2 and their sequ
Single-crystal cathodes (SCCs) are promising substitute materials for polycrystal cathodes (PCCs) in lithium-ion batteries (LIBs),because of their unique ordered structure,excellent cycling stability and high safety performance.Cathode materials with laye