论文部分内容阅读
针对表征自相似网络流量统计特性的赫斯特(Hurst)指数,讨论一种基于经验模式分解的Hurst指数估计算法。该算法通过对自相似网络流量数据进行自适应分解,得到一组满足指定余项误差的固有模态函数分量,由其能量对数化函数与Hurst指数之间的线性拟合,估计出Hurst指数。实验表明,该算法能对自相似网络流量的Hurst指数进行自适应估计。