论文部分内容阅读
天气受到多种因素综合影响,具有时变性和不确定性,单一模型难以获得较高的识别正确率,为此,提出一种改进K近邻和支持向量机相融合的天气识别模型(IKNN-SVM)。首先计算待识别样本与超平面间距离,然后将距离与预设阈值进行比较,如果大于阈值,则采用支持向量机对天气进行识别,否则利用K近邻算法对天气进行识别,并引入样本密度对K近邻算法进行改进,最后采用仿真实验对模型性能进行测试。仿真结果表明,相对于单一的KNN或SVM,IKNN-SVM提高了天气识别正确率,较好地克服单一模型存在的缺陷。