论文部分内容阅读
针对数学形态学滤除白噪声能力不足的问题,提出了奇异值分解( SVD)、局域均值分解( LMD)和数学形态学相结合的特征提取方法。将信号进行奇异值分解,对分解后的主要成分取均值,然后进行局域均值分解,选取主要分量求和重构,再用形态学差值滤波器提取故障信号的频率特征。通过数值仿真试验和齿轮局部故障模拟实验,结果表明:该方法能够清晰地提取出故障信号的频率特征,并与奇异值分解形态滤波法相比较,证明了该方法的有效性。