论文部分内容阅读
针对BP神经网络模型用于变形监测数据处理时容易陷入局部极小值并且收敛速度慢的问题,提出一种基于模拟退火(Simulated Annealing,SA)算法优化BP神经网络的建筑物变形预测方法,利用SA的全局寻优能力对BP神经网络的模型参数进行优化,使参数迭代过程始终保持较高的“温度”和“能量”,从而确保BP神经网络能够得到全局最优解的同时具备较高的预测精度和收敛速度.采用实际算例对所提SA-BP方法在低信噪比和小样本条件下的预测精度进行验证,结果表明所提方法相对于传统BP神经网络法和小波方法能够获得更高的预测精度,并且在小样本和低信噪比条件下优势更加明显.